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Abstract
In the Western United States, demand for water is often out of balance with limited water supplies. This has led to extensive

water rights conflict and litigation. A tool that can reliably forecast natural aquifer discharge months ahead of peak water demand
could help water practitioners and managers by providing advanced knowledge of potential water-right mitigation requirements.
The timing and magnitude of natural aquifer discharge from the Eastern Snake Plain Aquifer (ESPA) in southern Idaho is accurately
forecast 4 months ahead of the peak water demand, which occurs annually in July. An ARIMA time-series model with exogenous
predictors (ARIMAX model) was used to develop the forecast. The ARIMAX model fit to a set of training data was assessed using
Akaike’s information criterion to select the optimal model that forecasts aquifer discharge, given the previous year’s discharge and
values of the predictor variables. Model performance was assessed by application of the model to a validation subset of data. The
Nash-Sutcliffe efficiency for model predictions made on the validation set was 0.57. The predictor variables used in our forecast
represent the major recharge and discharge components of the ESPA water budget, including variables that reflect overall water
supply and important aspects of water administration and management. Coefficients of variation on the regression coefficients for
streamflow and irrigation diversions were all much less than 0.5, indicating that these variables are strong predictors. The model
with the highest AIC weight included streamflow, two irrigation diversion variables, and storage.

Introduction and Purpose
Water-supply forecasts are important water-

management tools, especially in semi-arid to arid
regions, where water supply and demand are often out of
phase. There are numerous types of forecast models. For
example, forecasts have been generated using statistical
models, mechanistic models, and calibrated numerical
model simulations. Translating forecasts into predictions
of natural aquifer discharge can be complicated and is
not a commonly applied water-management practice.
The desire to forecast groundwater elevations (Kacz-
marek 1961; Zaltsberg 1982; Houston 1983; Coppola
et al. 2005) and groundwater-surface water interac-
tions (Zaltsberg 1987) is not a recent development.
However, groundwater-flow regime forecasts have
not typically provided accurate predictions of natural
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aquifer discharge months ahead of peak groundwater
demand.

Numerical models such as MODLFOW (Harbaugh
et al. 2000) are often used to forecast groundwater levels
and groundwater discharge. The creation and calibration
of numerical models can be expensive, and there is
inherent uncertainty in model development that drives the
need for generating alternative models to assess predictive
uncertainty (Poeter 2007). We demonstrate that a simple
time-series regression model can be used to quantify cer-
tain aspects of groundwater flow and to forecast aquifer
discharge, even with restrictive assumptions. Compared
to the cost of developing numerical models, statistical
tools can often be implemented quickly and efficiently,
providing less costly methods for quantifying groundwa-
ter flow characteristics while still providing useful results.
This paper presents a procedure that can be used in April,
to predict annual aquifer discharge at the beginning of
irrigation season and months in advance of peak demand,
which is typically in July when sufficient water is not
always available to meet competing demands. The pre-
dictors used for the analysis include variables that could
impact the groundwater budget, such as precipitation and
irrigation-associated recharge, along with indicators of
water supply, such as reservoir storage and snowpack.
Our research objectives are (1) to determine whether natu-
ral discharge can be forecast using only data known at the
time of the forecast, (2) to assess whether the forecast can
be improved by using predictors that are not known at the
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time of the forecast but can potentially be forecast them-
selves, and (3) to assess whether analytically-derived,
theoretical relationships between aquifer recharge and
discharge are observed in recharge-discharge data.

Study Area
We apply our forecast procedure to the Box Canyon

Spring, one spring in the Thousand Springs Complex,
which discharges water from the Eastern Snake Plain
Aquifer (ESPA) in southern Idaho (Figure 1). The ESPA is
a critical water resource that it used to irrigate significant
areas of land and to provide drinking water to over
300,000 people. Groundwater levels and natural discharge
on the ESPA have steadily decreased since the 1950s
(Figure 2), and water managers have spent significant
resources over the last decade to develop an aquifer
management plan (Idaho Water Resource Board 2008).
The aquifer management plan includes a goal to increase
discharge in the Thousand Springs Complex. To continue
to manage competing interests, there is a need to develop
accurate, advanced knowledge of aquifer discharge in
the Thousand Springs area near Hagerman, Idaho, which
is the primary discharge area for the ESPA (Figure 1).
The forecasting procedure presented in this paper could
help water managers and users by providing them with a
simple, accurate, low-cost planning tool.

Regional Hydrogeologic Setting
The eastern Snake River Plain extends nearly

200 miles across southern Idaho (Figure 1). The ESPA
is primarily formed of highly fractured, interfingered
Quaternary basalt flows, with lenses of sediment between
the flows (Smith 2004). More detailed descriptions of the
geology of the eastern Snake River Plain are provided

by Anderson (1991), Whitehead (1986), and Kuntz et al.
(1992).

Approximately 69% of ESPA recharge comes from
irrigation seepage (i.e., infiltration of excess irrigation
water through the root zone), 23% from tributary basins,
9% from percolation of precipitation on the plain, and
8% from seepage from the Snake River itself, based
on the State of Idaho’s water budget for the ESPA
numerical model for the years 1981 through 2008 (Idaho
Department of Water Resources 2013). Average annual
discharge exceeds average annual recharge: approximately
68% of annual recharge to the ESPA is discharged
back to the Snake River, and about 28% is discharged
through pumping to meet crop evapotranspiration (ET)
requirements; the balance is accommodated by ET from
wetlands, urban pumping, and change in aquifer storage.
Average flow from the Thousand Springs Complex
exceeds 5000 cubic feet per second (cfs; 140 m3/s).

Response Variable
The USGS has reported flow from several springs

in the Thousands Spring complex daily since the 1950s
(http://waterdata.usgs.gov/id/nwis/sw/). We used dis-
charge at Box Canyon Springs near Wendell, Idaho
(USGS gauging station 13095500) as the response
variable in our model. Average annual discharge from
the spring has decreased steadily since the mid-1960s
to early 1970s (Figure 2), which is consistent with the
decreasing trend in the total discharge from the Thousand
Springs Complex.

Predictor Variables
We chose predictor variables to represent the major

recharge and discharge components of the ESPA water
budget, including variables that reflect overall water

Figure 1. Location of the Eastern Snake Plain Aquifer.
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Figure 2. Average annual (solid black line) and daily (solid
gray line) Box Canyon Spring (USGS 13095500) discharge
(April to April water year) in cubic feet per second (cfs). Data
source: http://waterdata.usgs.gov/usa/nwis/uv?13095500

supply and important aspects of water administration and
management. Previous analytical work suggests that we
need to focus on recharge variability close to the Thou-
sand Springs Complex to predict its discharge (Boggs
et al. 2010). There are numerous tributary streams that
contribute recharge to the ESPA via underflow through
alluvial valley fill. Flow in many of these tributary
streams is ungauged, and many of the streams are far
from the Thousand Springs Complex. We use the Big
Wood and Big Lost rivers to provide proxies for tributary
basin underflow to the ESPA and irrigation diversions for
the areas because they have been gauged since 1915 and
1912, respectively, and because they are significant trib-
utaries, in terms of recharge. Precipitation at the National
Weather Service Aberdeen Experiment Station (100010)
was selected because of its period of record (1939 to
present) and central location on the ESPA. The A&B
Irrigation District uses hundreds of wells to pump ground-
water for irrigation purposes and has reported total annual
pumping values since the district began pumping in 1960,
providing the most readily available pumping data on the
ESPA. Therefore, these pumping data were selected as a
proxy for pumping on the ESPA as a whole. The canal
systems representing the irrigation delivery water budget
item were selected because of their proximity to the Box
Canyon Spring and because of their long period of record.

Water diverted into canals on the ESPA comes from
one of two sources: surface water diversions (natural flow)
and reservoirs. Two of the canals, Milner-Gooding and
Big Wood, divert primarily natural flow, whereas the
Northside canal diverts primarily storage water. Because
total irrigation seepage is the difference between diversion
and consumptive use, we included as a predictor the
alfalfa reference ET at Pocatello (central location on the
plain, data obtained from Allen and Robison 2009).

Irrigation application methods could also affect net
recharge due to irrigation. Conversion from flood to
sprinkler application occurred steadily on the ESPA from
the 1950s through the 1990s, and many water users and
managers on the ESPA contend that water-level and
aquifer-discharge declines on the ESPA can be attributed

to the conversion from flood to sprinkler irrigation. Con-
tor (2004) performed an extensive review of sprinkler-
and gravity-irrigated land area for an ESPA numerical
modeling effort. We included fraction of irrigated land
under sprinkler irrigation as a predictor via an empirical
fit to Contor’s (2004) data similar to that used by Boggs
et al. (2010).

Snow water equivalent (SWE) data from the NRCS
Soldier Ranger Station (SNOTEL site 769), north of
the ESPA, was used to represent overall water supply
in the basin because of its period of record and its
proximity to the ESPA (http://www3.wcc.nrcs.usda.gov/
nwcc/site?sitenum=769&state=id). Much of the water
that falls on the mountains surrounding the ESPA is stored
in surface-water reservoirs. To represent storage, we used
the sum of reservoir storage in Jackson Lake and Palisades
Reservoir, which are located upstream of all points of
diversion and together account for half of the total storage
capacity in the Snake River system above the Thousand
Springs Complex.

Recharge and Discharge Water Year Convention
Theory indicates that when upgradient boundaries

have little effect on discharge, and recharge is periodic
and uniformly distributed across the domain, discharge
is also periodic, with period equal to that of recharge,
but lagged by 1/8 period (Townley 1995). The ESPA
more or less satisfies these conditions, with recharge of
annual period (Boggs et al. 2010), so discharge should
lag recharge by about 45 d. Over the common period of
record, the mean date of minimum in the annual cycles
of both irrigation infiltration and streamflow (the two
largest sources of recharge to the ESPA) was February
25. The mean date of minimum in annual cycles of
discharge at Box Canyon Spring was about 45 d later,
April 13 (Figure 3), consistent with theory. Thus, we
define the recharge water year as February 25 to February
24 and the discharge water year as April 13 to April
12. Our water year is designated by the calendar year in
which it starts. The year starting February 25, 1999, for
example, is called the “1999” recharge water year, and the
corresponding discharge water year would start on April
13, 1999. Using the minimum value to define recharge
and discharge water years not only aligns phase lag in
annual cycles with the analytical theory but also keeps
seasonal recharge and its theoretical effects in the same
year as discharge. The traditional October-to-September
water year or November-through-October irrigation year
splits the effect of seasonal recharge between two different
water years. Administratively, the irrigation season in the
upper Snake River system begins on April 1, and in most
years, the onset of physical irrigation ranges from April 1
at the lowest elevations to June 1 at the highest elevations.
Therefore, we generate our forecast in early April, which
coincides with the beginning of irrigation season and the
beginning of the discharge water year.

The application of the water year convention to any
given variable depended on the physical nature of the
variable and its data resolution (Table 1). Because the
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Figure 3. Average monthly Box Canyon Spring discharge
(USGS Station 13095500) for the period of record (1950
through 2013).

aquifer discharge data were available on a daily basis, we
summed daily values over the period April 13 to April
12 to obtain annual values for the response variable.
For the streamflow, diversion, and pumping variables,
we summed daily values over the period February 25
to February 24 to obtain annual values, except where
data were available only on a monthly or seasonal basis,
in which case we summed monthly values for March
through February to obtain the annual values. Although
direct precipitation over the ESPA is nearly uniformly dis-
tributed throughout the year, essentially all precipitation
that falls during the growing season is lost to ET. Only
precipitation that falls in the winter months, the majority
of which is in the form of snow, recharges the aquifer.
Using our recharge water year convention, precipitation in
November through February does not contribute to spring
discharge until the following year. Therefore, for the
Aberdeen precipitation variable, the value for water year
2000, for example, is the sum of monthly precipitation
over November and December 1999 and January through
March 2000. Similarly, mountain snowpack accumulated
over the winter of 1999–2000 would not contribute to

water supply until the 2000 discharge year, so we used
SWE on April 1, 2000, for example, as the value for
water year 2000. The annual values for percentage of
irrigation applied with sprinklers and for reservoir storage
were also taken to be their point-in-time values on April
1 to coincide with the start of the new discharge year and
the timing of the forecast. Thus, the fraction of irrigation
applied with sprinklers and the values of the water-supply
variables (precipitation, SWE, reservoir storage) for the
upcoming discharge year are known at the time of the
forecast. However, the values of variables representing
the largest components of the aquifer budget (streamflow,
irrigation diversion, crop ET, and groundwater pumping)
for the upcoming discharge year would not be known at
the time of the forecast.

Statistical Methods
We used time-series regression models in which the

predictors are potentially lagged in time and averaged
over several water years to reflect that aquifer recharge
is lagged in time and attenuated in magnitude before it is
discharged from the aquifer (Townley 1995; Knight et al.
2005; Criss and Winston 2008; Boggs et al. 2010). We
divided the data into calibration (1950 through 1999) and
validation (2000 through 2010) sets and used Akaike’s
information criterion (AIC; Akaike 1973; Burnham and
Anderson 2002; Anderson 2008) to select the optimal
model to predict aquifer discharge. Model performance
was assessed by fitting the model to the calibration set and
applying it to the validation set. Final model parameters
were estimated by fitting the model to standardized
variables, using the entire time series of data.

Time-Series Regression Model
As the response variable occurs in a time series,

we used a modification of standard linear regression
to account for temporal autocorrelation. In this case,
time series diagnostics indicated that correlation between
successive observations of discharge was near 1 but that

Table 1
Potential Predictor Variables Used in Regression Models (t Indicates Calendar Year)

Variable Description Definition
Year t Value Known at
Time of Year t Forecast

BLRiver Big Lost River Discharge 25 Feb(t) to 24 Feb(t + 1) total No
BWDiv Big Wood Canal Diversion 25 Feb(t) to 24 Feb(t + 1) total No
BWRiver Big Wood River Discharge 25 Feb(t) to 24 Feb(t + 1) total No
ET Reference ET on ESPA (Pocatello) Irrigation season(t) total No
MGDiv Milner-Gooding Canal Diversion 25 Feb(t) to 24 Feb(t + 1) total No
NSDiv Northside Canal Diversion 25 Feb(t) to 24 Feb(t + 1) total No
Precip Precipitation on ESPA (Aberdeen) Nov(t − 1) to March(t) Total Yes
Pump A&B Irrig. District GW pumping Irrigation season(t) total No
Sprinkler Fraction of land in sprinkler irrigation 1 April(t) value (fit to Contor 2004 data) Yes
Stor Reservoir Storage (Palisades+Jackson) 1 April(t) value Yes
SWE Soldier Mt. Snow Water Equivalent 1 April(t) value Yes

Note: Variables are listed in alphabetical order to facilitate reference.
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annual changes in discharge were uncorrelated. Thus,
the assumption of independence required by regression
analysis was met by using a first-order integrated time
series model with exogenous predictors (ARIMAX(0,1,0),
Shumway and Stoffer 2011). This model has the form

y (t) − y (t − 1) =
∑p

k=1
βk [xk (t) − xk (t − 1)] + εt ,

(1)

where y(t) is the discharge in year t , x1(t), x2(t), . . . ,
xp(t) are predictors, βk is the coefficient on predictor
k and εt is an independent and identically distributed
normal random variable. Defining the annual incre-
ments in response and predictor, respectively, by
�y(t) = y(t) − y(t − 1) and �xk (t) = xk − xk (t − 1),
Equation 1 reduces to

�y (t) =
∑p

k=1
βk �xk (t) + εt , (2)

which expresses annual increments in the response as a
linear function of annual increments in the predictors.
Equation 2 is equivalent to standard linear regression of
�y on �xk except that there is no intercept term. The
“null” model (no predictors) is a simple random walk, and
if the only predictor is time itself, the model represents a
random walk with constant trend (Shumway and Stoffer
2011).

After calculating the estimated regression coefficients
β̂k by maximum likelihood, the predicted value of the
response is

ŷ (t) = y (t − 1) +
∑p

k=1
β̂k (xk (t) − xk (t − 1)) . (3)

Equation 3 is known as a “one-step-ahead” prediction
equation, which predicts the value of the response in year
t , given the value y(t − 1) of the response in the previous
year and the values of the predictors xk(t) in the current
and previous years.

To accommodate potential attenuation and lag in the
statistical model, we considered the possibility that a
predictor variable xk(t) included in regression model (1)
is a simple arithmetic moving average of window width jk
of an observed quantity zk(t) and is also possibly lagged
by ik time units. The resulting increment in the predictor
reduces to

�xk (t) = 1

jk

[
zk (t − ik) − zk (t − jk − ik)

]
, (4)

which is the mean j -year trend in the quantity zk, lagged
i time steps. We selected ik and jk for each quantity zk by
choosing ik and jk to maximize the correlation between
y(t) − y(t − 1) and 1

jk

[
zk (t − ik) − zk (t − jk − ik)

]
.

Once the optimal moving-average window j and lag i
were determined for each predictor, Equation 4 was used
to compute the values of the variable �xk (t) used in
Equation 2.

As an illustration of an averaged and lagged variable,
consider annual precipitation. Annual increment in Box

Canyon discharge was most strongly correlated with
increment in annual precipitation at lag 1 and moving-
average window width 5. Thus, for example, the value of
the annual precipitation variable for water year 2000 was
one fifth of the difference between precipitation in water
year 1999 and precipitation in water year 1994. This
quantity is the mean annual trend in precipitation over
the 1994–1999 period, and its effect on discharge was
reflected most strongly in water year 2000. An optimal
correlation between discharge and recharge variables that
occurs at a moving-average window greater than 1 is
the statistical realization of attenuation in the effect of a
recharge variable on discharge. Because the time scale
of attenuation varies with spatial and temporal properties
of the recharge (Boggs et al. 2010), we expected that
some moving-average windows would result in higher
correlations with discharge than others.

Effects of Information Unknown at the Time of Forecast
Ideally, we would like to be able to predict discharge

for the upcoming year with knowledge of only the
previous year’s discharge and values of the predictors
known at the time of the forecast (“historic data”). This
would require all predictors to have a lag of at least
1, excepting those such as SWE whose current-year
value is known at the time of the forecast (Table 1).
In this modeling procedure, which we call “Model 1,”
we used only information about the predictor variables
that would be available at the time of the early-April
forecast. This required some of the predictors to be lagged
at least one year, even when the optimal lag from the
correlation analysis was 0. However, analytical models
indicate that annual periodic recharge sources relatively
close to the Thousand Springs Complex (approximately
32 miles; 50 km) impact spring discharge in the same
year the recharge occurs (Boggs et al. 2010). Thus, we
performed a second model-fitting and validation procedure
using some information that would not be known at the
time of the forecast. In this procedure, the optimal lag
was used for all predictors, even if lag-0 values would
not be known at the time of the forecast. In particular,
this allowed inclusion of diversion, streamflow, pumping,
and ET variables for the upcoming water year, which
are not known at the time of the forecast. We refer
to this procedure as “Model 2,” which would be useful
for forecasting only if the predictors unknown at the
forecast time were themselves forecast. However, this
model is useful for assessing whether recharge-discharge
relationships predicted by analytical models are reflected
in observed data.

Candidate Models
We proposed a priori a set of candidate models

(Table 2), based on the water budget and results of
analytical models (Boggs et al. 2010). We used the same
set of candidate models in both the Model 1 and Model 2
procedures. Thus, the only difference between the two
procedures was whether or not the values of all predictors
would be known at the time of the forecast. Several
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Table 2
Predictors Used in Candidate Models

Predictor(s)

Model BWRiver ET MGDiv NSDiv Precip Pump Stor SWE

A • • • • • • • •
B No predictors (null model, random walk)
C Temporal trend only (random walk with drift)
D • • • • • • •
E • • • • • • •
F • • • • • • •
G • • • • • • •
H • • • • • • •
I • • •
J • •
K • •
L • •
M • • • •
N • • • •
O • • • •
P • • • •
Q • • • •
R • • • • •
S • • • • • •
T • • • • • •
U • • • • • •

of the original predictors considered were eliminated
from inclusion in candidate-set models based on results
of the correlation analysis, including Big Wood Canal
diversions (correlations were low compared to other
diversion variables; two other canal diversion variables are
included in the analysis), Big Lost River discharge (highly
correlated with Big Wood River discharge and farther
from the Thousand Springs area), and conversion from
flood to sprinkler irrigation (correlations were extremely
low; in addition, the conversion from flood to sprinkler
conversion occurred rapidly compared to our forecasting
period). This left eight potential predictor variables were
Big Wood River discharge (BWRiver), Northside (NSDiv)
and Milner-Gooding (MGDiv) canal diversions, A&B
District pumping (Pump), Soldier Mountain SWE (SWE),
Aberdeen precipitation (Precip), reservoir storage (Stor),
and calculated reference ET (ET). Because they make up
the two largest recharge components of the ESPA water
budget, Big Wood River discharge and at least one of the
canal diversion variables were included in each candidate
model with two exceptions. We included a null model
(random walk) and a simple trend model (random walk
with drift) for comparison purposes.

Model Selection
Once a set of candidate models was defined, we used

AIC (Akaike 1973; Burnham and Anderson 2002), for
model discrimination. In the case of normally distributed
errors,

AIC = n
[
log

(
σ̂ 2) + 1 + log (2π)

] + 2K,

where n is the sample size, σ̂ 2 is the maximum-likelihood
estimate of residual variance (residual sum-of-squares
divided by n), and K is the total number of parameters
in the model, including the intercept and σ̂ 2. The AIC is
an approximately unbiased estimate of Kullback-Leibler
information (Kullback and Leibler 1951) of a fitted
model (Hurvich and Tsai 1989). When n

K
< 40, AIC

becomes negatively biased (Hurvich and Tsai 1989), so we
used the small-sample corrected version of AIC (AICc),
given by

AICc = n
[
log

(
σ 2) + 1 + log (2π)

]

+ 2K + 2K (K + 1)

n − K − 1
(6)

The AICc and �AICc were computed for each of
the models in the candidate set, where �AICc is the
difference in AICc values between each model and the
model with the lowest AICc value (Sugiura 1978; Hurvich
and Tsai 1989; Burnham and Anderson 2002). These
�AICc values were used to compute the relative evidence
weight wi for each model, given by

wi =
exp

(
−�AICci

2

)
∑

j
exp

(
−�AICcj

2

) , (7)

where �AICci is the �AICc value for model i and the
sum in the denominator is taken over all models j in the
candidate set (Burnham and Anderson 2002; Anderson
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2008). The models are then ranked in decreasing order
of model weight. The relative evidence weight can be
interpreted as the probability that the model is the best
among the candidate set of models. Prior to carrying
out the model selection procedure, we analyzed residuals
from the model that contained all potential predictors, as
recommended by Burnham and Anderson (2002). We also
analyzed residuals from the top model after selection with
AIC. In both models, residuals were slightly left-skewed.
However, departure from normality was not large enough
to affect overall results, given the sample size of 50 years
in the calibration set.

Results

Lags and Moving-Average Windows
We generated a matrix of correlations between the

response and each predictor at each combination of lag
times ranging from 0 to 10 years and moving-average
windows ranging from 1 to 10 years (Figure 4). Generally,
the strongest correlations of appropriate sign (that is,
positive with respect to recharge, negative with respect
to discharge such as pumping) occurred at a lag of 0.
Exceptions were BWDiv, Precip, and Sprinkler (Table 3).
In general, the moving-average windows that resulted in
the strongest correlations were longer for climate-related
variables such as tributary flow, SWE, precipitation, and
ET and shorter for variables driven by water management
and use such as diversions, pumping, and storage.

Model 1: Information Known at Time of Forecast
Five models accounted for a cumulative weight

of 0.94 (Table 4), as fit to the training subset. In the
discussion section, we interpret predictive ability of the
various explanatory variables based on relative weights
and particular combinations of predictors in these models.
Here, however, we assess model performance by using
the single model with the lowest AICc score to calcu-
late one-step-ahead predictions of Box Canyon Spring
discharge for years 2000 through 2010 (the “validation”
set, Figure 5). The Nash-Sutcliffe efficiency (Nash and
Sutcliffe 1970) for the model as fit to the training set was
0.95, but the Nash-Sutcliffe efficiency for predictions
made on the validation set was only 0.29. The Nash-
Sutcliffe efficiency is the generalization of the standard
R2 measure in linear regression modeling. The two
measures are identical for linear models, in which their
common value is the fraction of total sum-of-squares
in the response variable explained by the regression
model. For nonlinear models, including ARIMA time
series models, the total sum-of-squares is not equal to
the sum of residual and model sum-of-squares, so the
Nash-Sutcliffe efficiency may be negative. However, it
is always less than 1, and thus when its value is positive,
it can be roughly interpreted in the same way as R2,
namely as the fraction of variability in the response
variable explained by the model. The final parameters
and standard errors for Model 1 are reported in Table 5.

Figure 4. Correlation between Box Canyon Spring discharge
and the predictors as a function of lag time and moving-
average window.

Table 3
Predictor-Variable Lag Time and Moving-Average

Window (MAW) That Produced Optimum
Correlation with Box Canyon Spring Discharge

Predictor Lag MAW

Correlation of Maximum
Absolute Value and 95%

Confidence Intervals

BLRiver 0 8 0.54 ± 0.21
BWDiv 3 4 0.25 ± 0.25
BWRiver 0 5 0.55 ± 0.21
ET 0 5 −0.38 ± 0.25
MGDiv 0 2 0.59 ± 0.20
NSDiv 0 1 0.45 ± 0.23
Precip 1 5 0.42 ± 0.23
Pump 0 2 −0.30 ± 0.22
Sprinkler 8 2 −0.20 ± 0.23
Stor 0 1 0.26 ± 0.25
SWE 0 9 0.46 ± 0.23

Note: Predictors are listed in alphabetical order to facilitate reference.

Model 2: Unknown Information Included
For Model 2, we chose to use a slightly different

procedure than that used for Model 1 for selecting the
lag and moving-average window for each variable. For
Model 2, we chose the lag and moving-average window
for each variable by starting with the lag that produced
the highest correlation with Box Canyon Spring (this was
lag 0 for all predictors except direct precipitation, which
had optimal correlation at lag 1). Within this optimum
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Table 4
Model Comparison for Model 1, After Removing Models Containing Pretending Variables and Models

Accounting for Less Than 1% of Model Weight

Model and Predictors K log(L) AICc �AICc wi
∑

w i

U: BWRiver,MGDiv,NSDiv,Precip,Stor,SWE 7 −484.6 985.9 0.00 0.34 0.34
E: BWRiver,MGDiv,NSDiv,Precip,Pump,Stor,SWE 8 −483.4 986.2 0.36 0.28 0.62
F: BWRiver,ET,MGDiv,NSDiv,Precip,Pump,SWE 8 −484.3 988.1 2.26 0.11 0.73
A: BWRiver,ET,MGDiv,NSDiv,Precip,Pump,Stor,SWE 9 −482.9 988.2 2.36 0.10 0.83
G: BWRiver,ET,MGDiv,NSDiv,Precip,Stor,SWE 8 −484.4 988.3 2.42 0.10 0.94

K , number of fitted parameters; log(L),, log-likelihood; AICc, small-sample Akaike’s Information Criterion; wi, model weight;
∑

wi , cumulative model weight.

Figure 5. Observed and predicted (Model 1) Box Canyon
Spring discharge for the “validation” set of data (years 2000
through 2010); fitted values for the “training” set of data
(1951 through 1999) are also shown.

Table 5
Final Parameter Estimates (Based on

Standardized Variables) and Standard Errors for
Model 1

Predictor
Coefficient

Estimate (−)
Standard
Error (−)

Coefficient
of Variation

BWRiver −0.012 0.041 −3.417
MGDiv 0.428 0.152 0.355
NSDiv 0.241 0.092 0.382
Precip 0.155 0.050 0.323
Stor 0.066 0.030 0.455
SWE 0.238 0.080 0.336

Note: Coefficient estimates reported in this table were generated using
dimensionless response and predictor variables obtained by subtracting the
mean and dividing by the standard deviation.

lag, we chose the shortest moving-average window that
(1) produced a correlation that was significantly different
than 0 (of correct sign), and (2) produced a correlation
that was not significantly different from the strongest
correlation produced by any moving-average window
at that particular lag. This procedure produces more
parsimonious models, while accounting for uncertainty
in the correlation estimates. Specifically, among moving-
average windows that produced correlations that did not

different significantly from one another, we choose the
shortest moving-average window. Using this procedure,
we used a moving-average window of 1 for variables
BWRiver, MGDiv, NSDiv, Stor, and SWE, and a moving-
average window of 2 for variables ET, Precip, and Pump.

The residuals from the model with the lowest AICc
score, as fit to the training set, had first-order autocorrela-
tion, indicating that our procedure for calculating predic-
tions should change accordingly. Therefore, for Model 2,
we modified our model from an ARIMAX(0,1,0) model
to an ARIMAX(1,1,0) model, as given by

yt = yt−1 +
p∑

k=1

βk (xk (t) − xk (t − 1))

+ α
[
(yt−1 − yt−2) −

∑p

k=1
βk (xk (t−1)−xk(t−2))

]

(8)

where α is the first-order autocorrelation coefficient, and
all other variables are the same as in Equation 1. Six mod-
els accounted for a cumulative weight of 0.83 (Table 6),
as fit to the training subset. Using Equation 8 and
the model with the lowest AICc score, we calculated
two-step-ahead predictions of Box Canyon Spring dis-
charge for years 2000 through 2010 (the “validation” set,
Figure 6), again deferring interpretation of predictive abil-
ity of the various explanatory variables to the discussion
section. The Nash-Sutcliffe efficiency for the model as
fit to the training set was 0.96, and the Nash-Sutcliffe
efficiency for model predictions made on the validation
set was 0.57, compared with 0.29 for Model 1. We calcu-
lated final parameter estimates and unconditional standard
errors for Model 2 (Table 7).

Discussion
Predictors that reflect environmental conditions either

(1) recharge the ESPA at a relatively large distance
from the spring discharge location (e.g., SWE), or (2)
recharge relatively uniformly over a large area (e.g.,
precipitation). The fact that these environmental predictors
generally have stronger correlations with spring discharge
at larger moving-average windows compared to predictors
that are reflective of irrigation impacts is consistent
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Table 6
Model Comparison for Model 2, After Removing Models Accounting for Less Than 1% of Model Weight

Model and Predictors K log(L) AICc �AICc wi
∑

w i

O: BWRiver,MGDiv,NSDiv,Stor 6 −478.0 970.1 0.00 0.37 0.37
S: BWRiver,MGDiv,NSDiv,ET,Stor,SWE 8 −476.4 972.3 2.20 0.12 0.49
R: BWRiver,MGDiv,NSDiv,Stor,SWE 7 −477.9 972.5 2.46 0.11 0.60
D: BWRiver,MGDiv,NSDiv,ET,Precip,Pump,Stor 9 −475.3 973.0 2.98 0.08 0.69
T: BWRiver,MGDiv,NSDiv,Pump,Stor,SWE 8 −476.8 973.1 3.07 0.08 0.77
H: BWRiver,MGDiv,NSDiv,ET,Pump,Stor,SWE 9 −475.5 973.5 3.43 0.07 0.83

K , number of fitted parameters; log(L), log-likelihood; AICc, small-sample Akaike’s Information Criterion; wi, model weight;
∑

wi , cumulative model weight.

Figure 6. Observed and predicted (Model 2) Box Canyon
Spring discharge for the “validation” set of data (years 2000
through 2010); fitted values for the “training” set of data
(1951 through 1999) are also shown.

Table 7
Final Parameter Estimates (Based on

Standardized Variables) and Standard Errors for
Model 2

Predictor
Coefficient

Estimate (−)
Standard
Error (−)

Coefficient
of Variation

Autocorrelation
term

0.271 0.128 0.472

BWRiver 0.086 0.016 0.186
MGDiv 0.096 0.024 0.250
NSDiv 0.080 0.033 0.413
Stor 0.100 0.025 0.250

Note: Coefficient estimates reported in this table were generated using
dimensionless response and predictor variables obtained by subtracting the
mean and dividing by the standard deviation.

with analytical model results, which indicate that (1)
there is a direct relationship between the duration of
spring discharge impact and the distance between the
recharge and discharge location, (2) ESPA recharge from
sources extending over the entire aquifer affect the spring
discharge for more than one year, and (3) impacts of
ESPA recharge associated with the irrigation season near
the Thousand Springs area contribute to spring discharge
variability for no more than one water year (Boggs et al.
2010).

Model 2 had much greater predictive capability than
Model 1, and model coefficients for the strongest predic-
tors were more precisely estimated in Model 2 (Tables 5
and 7). However, of the four variables—BWRiver,
MGDiv, NSDiv, and Stor—that appeared in all of the top
models in the second modeling procedure, only the value
of carryover reservoir storage (Stor) is known at the time
of the early-April forecast. Therefore, a useful forecast of
tributary discharge and canal diversions for the upcom-
ing runoff/irrigation season is needed to use Model 2 to
predict spring discharge for the upcoming year.

The AICc model ranking is an effective way to
evaluate the relative strength of predictors. Focusing on
Model 2, it is clear that BWRiver, NSDiv and MGDiv,
and Stor have strong predictive capability. These variables
represent ESPA recharge in the form of flow entering the
aquifer from tributary basins, ESPA recharge associated
with irrigation, and water conditions from the year prior
to the forecast, respectively. Recharge associated with
two different irrigation entities (Northside and Milner-
Gooding) are represented in the models. Using recharge
associated with both irrigation entities leads to a more
efficient forecast of spring discharge than either one alone,
reflecting the difference in water rights for each. The
Northside irrigation entity relies heavily on storage and
the Milner-Gooding irrigation entity relies primarily on
natural flow. However, when only two of the variables
BWRiver, MGDiv and NSDiv were included without
the third (Models J, K, and L), model weights were
essentially zero, indicating that these three variables have
high predictive power only when they appear together.
It is also important to observe that when these three are
the only predictors used (Model I), model weight is also
zero, indicating that additional information beyond that
contained in these three variables is needed.

Among variables that provide additional information,
Stor is the only predictor present in each of the top ten
models in Model 2, which account for 98% of the model
weight. The storage variable primarily reflects carryover
storage from the previous year (thus supply for the upcom-
ing year), because Palisades Reservoir and Jackson Lake
fill after April 1 from runoff, whereas reservoirs in the
lower reaches of the ESPA fill during the winter and are
drafted consistently each year. Apparently, the storage
variable reflects overall water conditions from the pre-
vious year (the year prior to the forecast) in ways that
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the other predictors do not. SWE (variable SWE) appears
to be important as well, as it appears in the second and
third best model of Model 2. The SWE variable reflects
water availability for the forecast year. The cumulative
AICc weight of models containing either or both of the
predictors Stor and SWE was 0.6, whereas the cumula-
tive AICc weight of models containing the other three
variables used in our analysis was 0.2, 0.3, and 0.4 for Pre-
cip, Pump, and ET, respectively. The variable Precip has
relatively poor predictive ability compared with Stor and
SWE because the majority of water supply to the ESPA
originates as snowpack rather than as precipitation directly
over the aquifer. Furthermore, water supply and availabil-
ity, as reflected by Stor and/or SWE, are more important
predictors than the water-use variables Pump and ET.

The regression coefficient for BWRiver was negative
and weak in Model 1, counter to expectations. In Model 2,
the regression coefficient was positive and very strong.
In fact, BWRiver was the strongest predictor in Model 2
(CV = 0.186, the lowest coefficient of variation of any
regression coefficient). These statistical observations are
consistent with analytical theory, which indicates recharge
occurring within a distance of approximately 50 km of
Thousand Springs impacts the annual variation in the
spring discharge in the same year the recharge occurs
(Boggs et al. 2010).

As with any model, there are limitations in applying
the statistical forecast of annual Box Canyon Spring
discharge. We utilized historic data to develop our time
series regression coefficients, and it is clear that current
conditions on the ESPA are not consistent with historic
conditions, as reflected by nonstationarity in the time
series. For example, since the 1950s, water use and
management on the ESPA has changed for a variety
of reasons, including changes in land use, irrigation
practices, and in the flow regime of the Snake River
system associated with climate conditions. The lack of
stationarity in natural systems has raised concerns over
the ability to effectively manage water resources (Milly
et al. 2008). We believe these concerns are valid, and that
caution and professional judgment must be used when
applying time series regression techniques in the face of
increasing climatic variability.

The forecasting approach described in this paper may
work well for aquifers where there is a sufficient record
of aquifer discharge. Data on recharge components is
available for most aquifers. However, for many aquifers,
there is not a clearly defined discharge point at which
flow data are available. For aquifers where the interaction
between surface water and groundwater is important, this
forecasting procedure is appropriate and applicable. The
discharge forecasting procedure may not be appropriate
where hydraulic heads are more important than discharge.

Conclusions
We developed a procedure to predict annual aquifer

discharge in April, months in advance of the peak irriga-
tion season. Using only information known at the time of

the forecast (Model 1 approach) resulted in a model that
had excellent ability to match historic data (Nash-Sutcliffe
efficiency of 0.95), but only moderately weak predictive
capability (Figure 5), with a Nash-Sutcliffe efficiency of
0.29 for predictions on the validation set of data. For
Model 1, the cumulative AICc weight was over 0.95 for
models containing BWRiver, MGDiv, NSDiv, Precip, and
SWE as predictors, although this is not unexpected for the
river flow and diversion variables because all except two
models contained at least one of these predictors. Only
three other predictors were used (Stor, Pump, and ET), and
the cumulative AICc weight for models containing these
variables was 0.87, 0.53, and 0.35, respectively. Coeffi-
cients of variation on the parameter estimates indicated
that MGDiv, NSDiv, Precip, SWE, and Stor were the
most precisely estimated (CV around 0.5 or lower). Based
on coefficients of variation, BWRiver is a weak predictor
in Model 1. The “best” model (highest AICc weight)
using the Model 1 approach was a model that included
all potential predictors except Pump and ET (Table 4).

We developed a second model, one that not only
used information known at the time of the forecast but
that also incorporated annual values of stream discharge,
irrigation diversion, ET, and pumping for the upcoming
year (Model 2). Using this approach, the Nash-Sutcliffe
efficiency remained high for the model fit to historic
data (0.96), but increased to 0.57 for predictions on the
validation set of data, nearly a twofold increase compared
to the Model 1 approach. The fact that Model 2 explained
nearly twice as much variability in discharge verifies
analytical findings, namely that recharge from irrigation
close to the discharge point has a large effect in the same
water year (Boggs et al. 2010).

We included null and temporal trend models in our
analysis. In both Model 1 and Model 2, the null model
performed better than the trend model, and almost all
candidate models performed better than the null and trend
models. These results provide statistical evidence that
spring discharge does in fact respond to the external
predictors on an annual time scale and that annual
variability is neither random nor well described by a
simple downward trend. Therefore, we conclude that not
only can aquifer discharge be reasonably well predicted
with knowledge of recharge variables but also that
discharge can and does respond to recharge on time scales
relevant to water management and planning.
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